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Susceptibility of the Rectangular Ising Ferromagnet 

D.  B. Abraham ~ 
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The critical index values ~, = 7/4 for the susceptibility and 8 = 15 for the 
critical isotherm are derived rigorously for the rectangular Ising ferro- 
magnet with nearest neighbor interactions. The critical indices associated 
with the Fisher moment definition of the correlation length are obtained as 
T---> T~ +. The index of the fluctuation sum definition of critical correlations 
is obtained. 

KEY W O R D S :  Ising model; lattice statistic; two-dimensional systems; 
critical indices; transfer matrix; correlation length. 

1.  I N T R O D U C T I O N  

Some recent progress in the theory of  the rectangular Ising ferromagnet and 
the associated transfer matrix C~) has led to the analysis of  the interface profile 
in the two-phase region. (2) As was reported briefly, (8) the same method gave 
the first rigorous derivation of  the critical exponents 7 and ~,' for the divergence 
of  the magnetic susceptibility; this paper enlarges upon and extensively 
simplifies the derivation of the result 7 = 7/4. Since then Barouch, McCoy, 
and co-workers (~) have evaluated the amplitudes associated with the diver- 
gences by passing in a heuristic way to what is known as the scaling limit. 
This process has now been accomplished with full rigor for T > To: it is not 
needed, however, in the approach reported here to determine 7. 

The Ising model on a toroidal lattice is defined by specifying the energy 
of  a configuration (or} of  spins ai = + 1 located at each vertex i of  A, which 
is a subset of  772 of the form 

A = ( i :  1 <~il <<.N, 1 <~i2<~M} (1) 

The energy EA({a}) is gix;en by 

i~h i~A i s h  
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In the above H is a magnetic field and J1, J2 > 0 are nearest neighbor ferro- 
magnetic couplings. The canonical probability measure on the phase space 
{ -1 ,  1} TM is 

pa({e}) = Z s  ~ exp[-/3E^({e})] (3) 

with/3 = 1/kT. Henceforth the notations 

h = ~H,  K,  = [32i, i =  1,2 (4) 

will be used. The susceptibility is defined by 

X(/3, h) = ~h lim @i)^ (5) 
.A. ---~ o0 

where ( '")A denotes expectation with respect to (3). The limit A -+ ~ is to 
be taken in the sense of Van Hove. It is known that X can be expressed as a 
sum of truncated correlation functions (S~ 

X(/~, h ) -  1 + ~. u2(r) (6) 
t o 0  

where 

u2(r) = lim ((aoCrr)A - @o)A 2) (7) 
A ~ o O  

This formula is true also for the two,phase region provided the state is 
extremal, i.e., one must have plus or minus boundary conditions. (5'6) When- 
ever h # 0, X(/3, h) is bounded, but on h = 0, there exists a critical tempera- 
ture To defined by (7) 

sinh 2K1(c) sinh 2K2(c) = 1 (8) 

at which X diverges. Hereafter the notation t = ( T  - Tc)/Tc will be used and 
all thermodynamic functions will have arguments (t, h). The critical exponents 
are defined by 

y (resp. ~,') = - lim (resp. lim ] l o g  x(t,  0)/loglt [ (9) 
t ~ 0 +  \ t ~ 0 -  / 

The procedure used here to investigate (9), besides being rigorous, 
relates to basic approximate theories. The Ornstein-Zernike theory of corre- 
lations, recently placed an exact basis, ~8~ states that the decay of u2(r) is given 
by two complex-conjugate simple poles on the imaginary axis in the transform 
a~(Ikl). In the transfer matrix approach, the spin operator scatters from the 
vacuum, or equilibrium state, to many-particle states. The one-particle states 
give the Ornstein-Zernike pole, but the residue has to be modified by a factor 
I tl lta. For a ferromagnet the transfer matrix has only nonnegative eigenvalues, 
so that, as will be seen later, the Ornstein-Zernike theory, with corrected 
residue, gives a lower bound to (7). 
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The intuitive idea behind the heuristic calculations of  x(0, t) by Fisher (9) 
and Kadanoff (~~ is that only fluctuations on the length scale of the correlation 
length ~: make a significant contribution to X. These fluctuations involve 
scattering to states with any number of  particles and are thus not described 
fully by Ornstein-Zernike theory. Fisher's theory is correct as an upper 
bound to the fluctuations in (7) for large scaled lengths, whereas Kadanoff 's  
result is an upper bound for small scaled lengths. The latter case is very hard 
to treat for T < To, but in this case can be handled quite simply by use of  
Griffiths' inequalities (~5) and an ingenious application of duplication by 
Messager and Miracle-Sole (i2) to exploit the exact result for u2((n, n)]0, 0) 
given by Onsager. (is) The upper and lower bound thus constructed both 
diverge as It 17t~, establishing that y = 7/4. 

The modification to the classical theory of Ornstein-Zernike is thus two- 
fold; but it is a highly intriguing fact that correction of  the residue of the pole, 
but neglect of  the many-particle scattering, gives the amplitude of the 
divergence to better than 1 Yo. 

The correlation length is defined in terms of the Onsager function y(u) 
given by (ii) 

cosh ~(u) = cosh 2Ki* cosh 2K2 - sinh 2Ki* sinh 2/(72 cos u (10) 

where y(u) >/0 for real u defines the branch and exp( -2Kl* )  = tanh/{1. 
It can be shown (14) that ~(t, 0) = 1/~,(0). In terms of  the scaled lengths 
s = r~,(0) the sums in (6) might well be replaced by Riemann integrals; this is 
in fact the scaling limit. What one would like to be able to prove is that there 
exist suitable functions F• such that 

lim x(t, O)t v~ = sF~(s) ds (11) 
t~O• 

where we have assumed angular independence of u(r) in its scaled form. (3'8) 
Such results are quite crucial in the theory &critical phenomena. The methods 
used in this paper enable us to establish an analog of  (1 1) for s /> So, a 
constant. Considerable refinement is needed to go to (1 1) for t -+ 0 - .  

Convexity arguments due to Griffiths (16) have established exponent 
inequalities for the critical isotherm: let 

1/3 = lira log m(0, h)/log h (12) 
/1.,-* 0 + 
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where 

m(t, h) = lim (~)A (13) 
A ~ o o  

is the magnetization. Then, for the rectangular Ising ferromagnet which has 
a = ~' = 0 (the specific heat exponents), ~11~ Griffiths has shown that (assum- 
ing 3 exists) 

(2 - a)(~ - l) ~< y($ + 1) (14) 

and that 

13(1 + 8) 1> 2 - c~' (15) 

In the above, fl is the index for the spontaneous magnetization. In the present 
case, fl = 1/8. c17) The result of this paper that y = 7/4, taken with (14) and 
(15), then implies that 8 = 15. Considerably more recondite considerations 
enable one to prove that 

15 >t 3 + /> 3- >/ 15 (16) 

where 

3 + (resp. 8-)  = lira sup (resp. inf)log m(0, h)/log h (17) 
~ 0 +  

In this way the assumed existence of  3 is established; this is somewhat arcane. 
The numerical results of  Gaunt and Sykes (18) (3 = 15 _+ 0.008) are in excellent 
agreement. 

Finally, Fisher's moment definition of the correlation length and of  the 
critical correlation exponent will be investigated. 

2. TRANSFER M A T R I X  

The starting point of this calculation is the expression for u(r) in terms 
of  the transfer matrix spectrum and matrix elements in the basis generated by 
its eigenvectors. In the limit N, M - +  0% it has been shown that (1) for t > 0, 
h = 0, 

o (2j + 1)! \2~]  , ] - ,  
2J+1 

x exp - ~ [ l ~& ( ' . )  + ir2c~ (18) 
1 

where 

K((~O)zj + 1) = I F'((e'~ + 1) 12 (19) 
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with the standard notation (co), = (wl,..., oJn). The following definition is 
useful: 

As(z), = (zl .... , zj_l ,  zj+~,..., z,), 1 ~< j ~<. n (20) 

A, = ~ Aj (21) 
j e l  

for any index set L 
Then 

2 n + 1  

FX((z)2,~+ ~) = ~ ( -  1)'g(zj)F(Aj(z)2,+ l) (22) 
3. 

with F defined recursively by 
2 n  

V((z)2,~) = ~ ( -  1)'f_ (zlz,)F(Alj(z)2,~) (23) 

The boundary condition is 

F(~) -- [1 - (sinh 2/s sinh 2K2)2] 1~8 (24) 

and 

with 

and 

g ( t )  =- ( B / A ) ~ t 2 t [ [ ( t  - A -  1 ) ( t  - B)] ~ 

f_  (zt) = {f(z) [ f ( t -  1)] -1 _ f ( t ) [ f ( z -  1)] - 1}zt/(z t _ 1) 

f(z) = [ ( z  - a ) ( z  - B - ~ ) ]  1~2 

A = coth K2 coth KI*, B = tanh K2 coth K~* 

The above results are clearly of  Pfaffian form. (10) 

(25) 

(26) 

(27) 

3. L O W E R  B O U N D S  FOR x 

From (18) it follows that 

u(r) ~< exp[-Irl l~(0)] (28) 

by use of  the triangle inequality and completeness. Thus 
ov 

u2(r) ~< ~ n exp[-n~,(0)] (29) 
r ~ O  O 

which converges if ~,(0) > 0. Thus the double sum implied by (6) and (18) 
converges absolutely and may be rearranged to give 

x(t, 0) = 1 + ~ X2J + 1(0 (30) 
0 
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where 

1 ~ [ 1  '~2j'+1 f .:. j" d(~ g2j+z(t) 
(2j + 1)! ,7o \ ~ !  

2 J + l  

x K(oJ)2j+ 1 exp - ~ [Irlb,(o~) +/r2o~] (31) 
1 

The sum is conveniently divided into the regions R1 = {r: 1 ~< rl < 0% 
- r l  + 1 ~< r2 ~< r~} and its images Rj ,  j = 2, 3, 4, under rotation. Just the 
Rx contribution will be given, since the others are trivially related to it. 

By dominated convergence, the order of  summation and integration in 
(31) can be reversed, giving 

X=j+l(t) = (2j + 1)1 ~ .. d(o~)2j+z 

x K((oJ)2j+l) 1 + cos oJ~ cosh y(oJk) - cos oJ~ 
1 

(32) 

Note that pc2j+l(t) >1 O, so that any partial sum of (30) gives a lower bound to 
X. In particular, from (22) with n = 0, it follows that 

F xl(t) = F(402 doJ/sinh y(oJ) [cosh y(oJ) - cos oJ] (33) 

By making the change of  variable x = o~/y(0), (33) gives 

f) lim tv4pc~(t) = A dx/(1 + x2)1/2(1 + 2x 2) (34) 

The same sort of  reasoning implies that every term in (30) has the t -v~ 
divergence. Finally, it is clear that 

lira inflog pc(t, 0)/[log tl /> 7/4 (35) 
t -*O+ 

4. AN UPPER B O U N D  FOR x(t,O) 

By examining (22)-(26), we can rewrite (18) 
&o/sinh ~,(~) and with J((o~)2n + 1) replacing K, where 

j((o,)=. + ~) -- I G~((e"%,~+ 1) 1 ~ 
with 

2n+ 1 

ax((~)~.+~) = ~ (-11~6(a~(z)2.+~) 
1 

with doJ replaced by 

(36) 

(37) 
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In the above, G is given by a formula analogous to (26), but with contraction 
function 

w_(e"~ e'~ = [sinh v(oJ1) - sinh 7(o~2)]/sin[(o~ + o~2)/2] (38) 

By enumerating terms in the modified form of (18) and replacing each con- 
traction by its supermum, one obtains 

co 

u2(r) ~< F(4) ~" ~ (suplw_ l) ~j [(2j + 1)(2j - 1)..-] ~ o (2j + 1)! I(rllT(0))2J~ +~ (39) 

with 

I(rl~(0)) = (1/2~) e -r~(~) da,/sinh 7(co) (40) 

The combinatorial factor can be bounded above by Aj 1/2, where A is the 
Euler-Mascheroni constant. Thus (39) gives 

co 

u2(r) ~< F(r [),(0))A ~ jl/2a(t)2SI(r117(0)) 2j (41) 
0 

which makes sense provided a(t)I(r~]~,(O)) < 1, which is satisfied, for any 
7(0) > 0, by rl > so/~,(0), where So is a constant. From (41) one obtains 

B(so) = lim sup t TM ~. rlu(rl, O) 
t ~ 0 + r l  > sol~(O) 

<<. B ds KoS(S)/[1 - K02(s)] 2 (42) 
o 

where 

Ko(s) = (1/2 e -~~176176 dO (43) 
oo 

is a Bessel function. For so one may take any real number such that Ko(so) < 1. 
The remaining problem is then to handle the rest of the sum in (6). 

Clearly 

where 

lim sup tTl~x(t, O) <. A(so) + B(so) (44) 

Monotonicity in r~ of u(rl, 0) gives 

o) 2 
T I r I even 

T 1 oven 

(rl + 1)u(rl, 0) 

(rl + 1)u(rl/2, r1/2) (46) 

SO/7(O) 

A(so) = lim sup t ~14 ~ rlu2(rl, 0) (45) 
t ~ 0 +  1 
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where the second inequality follows from the diagonal duplication argument 
of  Messager and Miracle-Sole. (12) Now making the t dependence explicit, 
Griffiths' inequalities (16~ give u2(rlt ) ~< u2(r]0) for t >~ 0. Onsager (18~ has 
given u(r, r[0) exactly. In fact, 

u(r, riO) = Cr-1/4[1 + O(r-2)] (47) 

with C = 0.645002448 .... It follows that 

C(so) <~ s 3/~ ds (48) 

Using (42), (44), and (48), it follows from (6) that 

lim sup log X(t, 0)/]log t I ~< 7/4 (49) 
t ~ 0 +  

Thus the limit in (9) exists as t--> 0 + ,  and moreover 7 = 7/4. The same 
argument cannot be used for t ~< 0 because the Griffiths' inequality cannot 
be applied to u2(r) in a useful way. 

Using Propositions 5.1, 5.2, and 5.3 of  Ref. 1, we have the result 

X(0, t) = It/-7/~ dssF~(s)  + ~ u(r) + C(t, So) (50) 
o It] < SolY(O) 

where C(t, So) is the "correction to scaling" contribution to the fluctuation 
sum. Equation (50) is valid for any So > 0. The sum in (50) is bounded above, 
using the previous Griffiths' inequality argument, by lt[-71~. Wu et al. ~4~ and, 
independently, Ryazanov (2~ and Vaks et al. ~2~ have given an asymptotic 
estimate of F~(s) valid as s--> 0: 

F~(s) ,.~ F(O)/s ~/4 

This ensures integrability of  sF• at s = O. 

5. THE CORRELATION LENGTH A N D  
CRITICAL CORRELATION FUNCTION 

Fisher (22~ has defined a sequence of correlation lengths ~:~(t, h) by 

(~:~(t, h)) 2r = ~ ]r[2~u2(r[t, h)/x(t , h) (51) 

Using the GHS technique of Ref. 5, it can be shown that ~:~(t, h) is continuous 
in h at h = 0 for t # 0. Critical indices for the divergence when h = 0 of  
(51) as t --~ 0 + are given by 

v~ = - lira log ~:~(0, O/log[t[ (52) 
t ~ O +  

with v~' defined analogously when t - ~  0 - ,  assuming in both cases that the 
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limit exists. Use of the upper and lower bounds given in Section 4 gives the 
result 

v~ = 1 (53) 

independent of cp. Fisher and Burford (14~ have pointed out different definitions 
of the inverse correlation length and the difficulties which may arise in the 
naive interpretation of the inverse correlation length in terms of the mass 
gap, or spectral gap, of the transfer matrix. This was highlighted in the work 
of Johnson et  al.  ~23~ on the eight-vertex model. The "mass gap"  definition is 

~:~(t, h) = - lim log u2(r[t, h)/loglr I (54) 

Using the fact that the n-particle states make a nonnegative contribution to 
u~(rlt, 0) in (18) for any n /> 1, by considering n = 1 and the upper bound 
(28), it follows in a straightforward fashion that v~ = 1, once again by 
constructing upper and lower bounds in the definition (52). 

Fisher has also defined the critical index ~ by 

2 - ~7 = lira log ~ .  u2(rl0, 0)/log R (55) 

Once again we can use the duplication argument of Messager and Miracle- 
Sole a2~ and Onsager's diagonal correlation function (I3~ to deduce that 

2 - ~  ~< 7/4 (56) 

But, using the moment definition, (51), Fisher (22~ has derived the exponent 
inequality for Ising ferromagnets 

y ~ (2 - ~)~1 (57) 

Consequently, introducing the rigorous results already obtained in this paper 
into (57) gives 2 - ~ /> 7/4 so that 

~7 = 1/4 (58) 

Messager and Miracle-Sole a2~ have also proved by duplication that since 
u(r, rl0, 0) ~ Alr[-~, then the same form of asymptotic decay obtains in 
any direction. 
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